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Abstract: - Enlightened by the asymptotic behavior of the thin wall structured body, the present study 
deals with the novel Legendre polynomials to investigate the dynamic behavior of an isotropic thin 
cylindrical shell by using asymptotic approach under cylindrical symmetry. It is found that the motion 
in n-th mode of the cylinder does not depend on higher or lower modes and variants of each mode 
satisfies same set of equations. Here we set some special assumption to make the problem simple and 
make an attempt to give an analytic expression of radial vibration when a semi-infinite cylinder of 
large radius is subjected to large longitudinal stimuli. Excellent analytical expressions are 
demonstrated by using the Duhamel’s principle for non-homogeneous differential equations and due 
to the presence of Legendre Polynomials, and cylindrical symmetry also.  
 
 
Key-Words: - Radial and longitudinal vibration; asymptotic approach; cylindrical shell; cylindrical 
symmetry; linear classical theory.   
 
1 Introduction 

From the pioneering work of Love [1], theories 
of elastic vibration and waves are getting 
enormous importance in the field of continuum 
mechanics. In 1959, three dimensional 
investigation on harmonic wave propagation in 
hollow circular cylinder has been studied by 
Gazis [2]. In 1965, wave propagation in 
transversely isotropic circular cylinder of 
infinite length has been investigated by Mirsky 
[3]. Later on, in the year 1992, Sinha [4] have 
discussed the axisymmetric wave propagation 
in circular cylindrical shell immersed in fluid in 
two parts. In the first part they have discussed 
the theoretical analysis of the propagating 
modes and the axisymmetric modes excluding 
torsional modes that are obtained theoretically 
and experimentally has been compared in the 
second part.  A rather detailed account of 
diverse recent theoretical advances and 
applications of vibration of shells in the various 
fields can be found in the monograph of Leissa 
[5].  

In last two decades, dissimilar forms of 
vibration depending on the material 
properties/arrangements in various kinds of 
plates and shells have been investigated by 
several authors. Among them we can mention; 
composite Vibration of functionally graded 
multi-layered orthotropic cylindrical panel 
under thermo-mechanical load has been 
discussed by Wang [6]. Three dimensional 
vibrations of a homogeneous transversely 
isotropic thermo-elastic cylindrical panel have 
been investigated by Sharma [7] and the free 
vibration of transversely isotropic piezoelectric 
circular panels was analyzed by Ding [8]. 
Soldatos and Hadhgeorgian [9] have studied the 
frequency of vibration in isotropic cylindrical 
shell and panel by iterative approach. Free 
vibration of composite cylindrical panels with 
random material properties have been 
developed by Sing [10], in this work they have 
modeled the mechanical properties of laminated 
composite cylindrical panel on its natural 
frequencies as random variables. Zhang [11] 
have showed a wave propagation method to 
analyze the frequency of cylindrical panels. Loy 
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and Lam [12] have studied on the vibrations of 
thin cylindrical panels of simply supported 
boundary conditions with Flugge’s theory and 
also investigated the vibration of rotating 
cylindrical panel. Three dimensional solution of 
a simply supported rectangular hybrid plate has 
been obtained by Kapuria [13]. Natural 
frequency of a cylindrical panel on a Kerr 
foundation has been analyzed by Chen [14]. 
Free vibrations of thin cylindrical shells having 
finite lengths with freely supported and 
clamped edges have been discussed by Yu and 
Syracuse [15]. The static and dynamic analysis 
of plates supported on elastic foundations (see 
Ref. [16]) is an interesting problem in 
engineering. The dynamic response of isotropic 
cylindrical shell buried at a depth below the free 
surface of the ground from the point of view of 
the three-dimensional elastic theory have given 
by Wong et al [17]. Paliwal et al [18] presented 
a clear investigation on the coupled free 
vibrations of isotropic circular cylindrical shell 
on Winkler and Pasternak foundations by 
employing a membrane theory. Upadhyay and 
Mishra [19] have studied the non-axisymmetric 
dynamic behavior of buried orthotropic 
cylindrical shells excited by a combination of P-
wave, SV- and SH- waves.  

Classical plate theory really develops after the 
pioneering work of Kirchoff. After that 
thousands of publications are presented which 
try to give the foundations and methods of 
deduction of Kirchoff-Love theory and its 
possible improvements. Books of Ciarlet [20, 
21] can be mentioned in this context. This two 
dimensional linear model which are in fact, the 
two-dimensional approximation of three 
dimensional theories of elastic plate involves a 
priori assumptions regarding the variations of 
unknowns (i.e. displacements and the stresses) 
across the thickness of the plates. The 
assumptions on which the theory of small 
deflection of thin elastic plate is based can be 
found in [22]. Another method which has been 
used to obtain two dimensional model of thin 
elastic plates is the so-called asymptotic 
expansion method. In this method, a formal 
power series expansion of three-dimensional 
solution is used by considering the thickness of 

the plate as the small parameter and the 
Kirchoff model of linear elastic isotropic plates 
is obtained as the leading term of formal 
asymptotic expansion. The early works of 
Goldenveizer [23], Freidrich and Dressler [24] 
etc., are representative example of this 
approach. A rigorous mathematical 
reformulation of the asymptotic approach has 
been given by Ciarlet and Destuynder [25] in 
which the three-dimensional problem is posed 
in variational form and a functional framework 
is used. There is another popular classical 
theory by taking into account shear effect that is 
ignored in Kirchoff-Love plate theory, which is 
known Reissner-Mindlin plate theory.  

In this present article we have concentrated on 
the arguments to analyze the free vibration of 
an isotropic thin cylindrical shell by asymptotic 
approach under cylindrical symmetry.  
 
 
2 Problem Formulation 
 
2.1 Basic equations and notations 

Balance of linear momentum yields the 
following equation 

0)(, =−+ jj
j

ij uft ρ                                                                                         
(1)  
Balance of moment of momentum yields  

jiij tt =                                                                                                                                             
(2) 

where ρ is the density; ijt , ii uf ,  are the 
contra-variant component of sress-tensor, body-
force density, displacement of the continuum  
along ix -direction respectively, ‘dot’ denotes 
the differentiation with respect to time and 
‘comma’ denotes the covariant differentiation 
with respect to ix -co-ordinate )3,2,1( =i . 

In linear elasticity we have the following 
constitutive equation for isotropic body 

WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS Soumen Shaw

E-ISSN: 2224-3429 9 Volume 14, 2019



)( jiijijkkij Ggt εελε ++=                                                                                                                
(3) 

G,λ   are the two elastic constant in classical 
theory for isotropic body and i

j
ij u,=ε , ijg is 

fundamental metric-tensor ; 3,2,1,, =kji . 

Here we use cylindrical co-ordinate and let 
zr 



 ,,θ  be the unit vector forming orthonormal 
triad at the point ( zr ,,θ ). θθθθ rzrzzzrr tttttt ,,,,,  
are the components of stress tensor and 

zr uuu ,, θ  are the components of displacement 
vector with respect to  unit orthonormal triad 
mentioned above and are given by 

 

rzzrzzrr ttggttggttggttgttgttg ====== 13
3311

32
2233

12
2211

33
33

22
22

11
11 ,,,,, θθθθ

 and 

.,, 3
33

2
22

1
11 zrr uuguuguug ===                                                                                        

(4) 

For cylindrical co-ordinate  

zxxrx === 321 ,, θ  

1,,1 33
2

2211 === grgg  and  

r
r 1

12
2

,
22
1

=








−=






  are the only non-zero 

Christoffel symbol of second kind in cylindrical 
co-ordinate system. 
 

2.2 Mathematical formulation:  
 

We consider here a thin right circular 
cylindrical shell and use cylindrical co-ordinate 
system under which a point in space is 
represented by ),,( zr θ , where zr ,,θ have usual 
meaning, to measure its deformation.   

Let the shell is existing above the plane 0=z  
and is infinitely long along z -direction with 
one end lying at 0=z  plane. It occupies the 
region between ar =   and br = , where ab >

and ab −  is small. We take z-axes along the 
axes of the cylinder and want to discuss its 
vibration under axial symmetry. 

We introduce a new variable R  defined by  

ab
barR

−
+−

=
)(2   

Therefore, as r runs over a  to b ; R  runs over 
1−  to 1. 

Now we make the following assumption  

∑
=

=
N

n
n

i
n

i RPtzuu
0

)( )(),(                                                                                                                   

(5.a) 

( ) ( )∑
=

=
N

n
nn

kl
n

kl RPItztt
0

)(]/,[                                                                                                           

(5.b) 

where ;3,2,1,, =lki  N  is some natural number 
denotes order of the theory in asymptotic 
approach, )(RPn denotes the Legendre 
polynomial of degree n  and )12/(2 += nI n .we 
further assume that the thickness of the shell, 
i.e. ab −  does not change due to deformation 
and  for that we must have 01

)( =nu   if n  is odd. 

We know that }:)({ Ν∈nRPn forms a 
orthogonal basis of the inner-product space of                  

2
 -measurable function in [-1, 1] with the 
inner-product which is defined by 

                        dxfggf ∫
−

=
1

1

, 

 where ]1,1[, 2 −∈gf . It is well-known that 
such space is Hilbert-space and any function 

]1,1[2 −∈ f can be expressed as∑
∞

=0
)(

n
nn RPc , 

where nnn IRPfc /)(=  with 2
nn PI = . nc  is 

called the co-ordinate of f  in 2L -space with 
respect to the basis }:)({ Ν∈nRPn . 
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Now we can reduce the problem to a one 
dimensional problem by usage of integration 
theory systematically. 

Following the asymptotic theory we assume 
that it is possible to choose N , so that 
dependence of kl

n
k
n tu )()( ,  on )( ab −  is ignorable. 

Since )( ab −  is small we can ignore ( )mab −   
for some natural number m  and in that case we 
choose  .mN =      

Taking the body-force 0=jf , equation (1) can 
be written in the following manner:  

             0=−








+








+
∂
∂ jkjik

i

ij

ut
ik
i

t
ik
j

x
t

ρ  

or,       { } 01
=−









+
∂
∂ jikij

i ut
ik
j

tg
xg

ρ , 

where ( )ijgg det=  

Now from the above equation we get  

{ } ( ) 01
=−









+
∂
∂ RPut

ik
j

tg
xg n

jikij
i

ρ      

Here,  ,2rg =  02 =∂∂=∂∂ θx  [due to 
cylindrical symmetry], .3,2,1,, =kji  

Using (5.a), (5.b) and by making suitable 
approximation we get from the above equation 

( )
( ) ( )[ ] ( ) 0)(1 1

1

1

3

=−
∂
∂

+








+
∂

∂
∫
+

−

j
nnn

j
n

ik
n

j
n uIdRRPtr

rr
t

ik
j

z
t

ρ

                                                                 (6) 

Replacing r  by 
2

ab +  in the expression of

,







ik
j

 we get







ik
j

. 

Now we consider the following expression 

[ ] dRRPtr
rr n

j )(1 1
1

1 ∂
∂

∫
+

−

 

[ ] ∫
+

−

+

− 



−=

1

1

11
1

1 )(
)(

r
RP

dR
drt

dr
dRRPt

dr
dR nj

n
j  

[ ] ( ) ( )∑
≥−

≥
−−

+

− +
+−≈

112

0

11
12

1
1

1 22)(
in

i

j
n

j
inn

j t
ab

t
dr
dRRPt

dr
dR

      
[Replacing r by 2/)( ab + we get]

 

( ) ( )
j

n

in

i

j
in t

ab
t

ab
1

112

0

1
12

24
+

+
−

−= ∑
≥−

≥
−− , where  

( ) ( ) n
j

n
j

n Itt /11
. = . 

Consider the boundary surface ,1±=R  is free 
of traction.  

Now using this we get from (6) 

( )
( ) ( ) ( ) ( ) 024 1

112

0

1
12

3

=−
+

+
−

−








+
∂

∂
∑

≥−

≥
−−

j
nn

j
n

in

i

j
in

ik
n

j
n uIt

ab
t

ab
t

ik
j

z
t

ρ

 

Now from our assumption that i
n

ij
n ut )()( ,  does not 

depend on ab − , we get  

 ( )
( ) ( ) ( ) 02 1

3

=−
+

+








+
∂

∂ j
nn

j
n

ik
n

j
n uIt

ab
t

ik
j

z
t

ρ                                                                                        

(7) 

 { }.3,2,1,, ∈kji  

From Equation (7) it is to be noted that the 
motion in n-th mode does not depend on higher 
or lower modes and variants of each mode 
satisfies same set of equations.  

From general plate theory we assume  

         ,011 =t  

  ;)2(, 11 KKGor ελλε +−=  3,2=K  

From equations (3), (5.a) and (5.b) we obtain  

( ) ( )[ ]K
L
n

KK
L

K
n

LL
nnn

KLKL
n ugugGIuIEgt ,,,

1 3
3

)(2)( ++
−

=
ν
ν

,  
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( ) ( ) ( )[ ] ( ) ( )∑
≤++

≥
++−

++=
Nin

i

L
in

L
nLn

LL
n

L
n u

ab
ugugGIt

12

0
121

1111 4,,

                                                                 (8) 

where 
;3,2,;)1(2),1)(21/( ==++−= LKGEE νννλ

ν,E   are called Young modulus and Poisson’s 
ratio respectively. 

                                                                                                                                                                                                                   
From our assumption we should have the 
expression of ( )

1L
nt  which is independent of the 

terms involving ).( ab −   

So we assume  

( )∑
≤++

≥
++

Nin

i

L
inu

12

0
12 =0.                                                                                                                                 

(9) 

From (7), (8) and (9) we get 

( ) ( ) 02
1

2 3
2

1
2

2

2

2

=
∂
∂

+−
−








−

∂
∂

−
∂
∂

nn u
zab

Eu
tz

G
ν
νρ

                                                                     (10) 

( ) 02
2

2

2

2

=







∂
∂

−
∂
∂

nu
tz

G ρ                                                                                                                  

(11) 

( ) 02
1

1
)(

3
2

2

2

2

2 =
∂
∂

+
+








∂
∂

−
∂
∂

− nn u
zab

Gu
tz

E ρ
ν
ν                                                                                

(12)  

From (10), (11) and (12) it is seen that the 
motion of torsion ( 2u ) of the cylinder is 
independent of longitudinal ( 3u ) and radial ( 1u ) 
motion but longitudinal and radial motion are 
coupled.  

Consider )( ab +  is large enough to ignore the 

term ( )
11
nu

zab ∂
∂

+
  and then equation (12) is 

reduced to 

( ) 0
1

3
2

2

2

2

2 =







∂
∂

−
∂
∂

− nu
tz

E ρ
ν
ν

           
                                                                                             

(13)
    

 
3 Analytical discussion of solution under 
certain consideration:  
 

From (11) it is seen that ( )
2
nu  satisfies a classical 

wave equation propagating along z -axes with a 
wave speed ρGc =0 .  

Now we are going to solve (10) and (13) to 
construct a relation between radial and 
longitudinal disturbance.  

Let us consider      

( ) ( ) .0
0

1

0

1 ==
== tntn uu                                                                                                                 

(14) 

Applying Laplace transform [ ]stL →  to 
equation (10) we get 

( ) ( ) ( )szFus
dz
dG nn ,2 12

2

2

=







+− ρ    

 or, ( ) ( )szFu
c

s
dz
d

nn ,12 1
2
0

2
2

2

=















+−
ρ

    

 with boundary condition,                                                                                                         
(15) 

( ) 0
0

1 =
=znu

                                                                                 

 ( ) .01 =
∞→znu                                                         

Where, 

            ( ) ( )[ ]sttzuLszu nn →= );,(),( 11 ,                                                                                     
(15.a) 
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          ( ) ( )

z
uE

ab
tzF n

n ∂

∂

−+
=

3

21)(
2,

ν
ν ,                                                                                      

(15.b) 

         ( )[ ]sttzFLszF nn →= ;,),( .                                                                                           
(15.c)    

Now to solve (15) which is a non-homogeneous 
equation, we use Duhamel’s construction of 
solution of non-homogeneous differential 
equation, which is known as Duhamel’s 
principle. 

We expect the solution of (15) can be given by 

( ) ( ) ,,;
0

1 ξξυ dszu
z

nn ∫=                                                                                                                     

(16)  

where for eachξ  satisfying z<< ξ0 ,  nυ  
satisfies the equation, 

,012
2
0

2
2

2

=















+− nc

s
dz
d υ

ρ
 

( ) ( ) .0,;);,(,; ==
∂
∂

∞→
=

znn
z

n szssz
z

ξυξψξυ
ξ

                                                                      

(17) 

Solution of (16) is given by  

( ) ( ) 0

2 22/1
2

0
2,,; c

z
s

nn esscsz
ξ

ρ

ρ
ξψξυ

−
+−

−









+−=                                                                        

(18) 

From (17) we can say ( ) 0,; =
∞→zn szzυ and for 

that we must have   

( ) 0, =
∞→zn szψ                                                                                                                              

(19) 

From (16) we get 

( ) ( ) ( )[ ] ( )∫ 















+−++=
















+−

z

nnnn dsz
c

s
dz
dszz

dz
dszzu

c
s

dz
d

0
2
0

2
2

2
1

2
0

2
2

2

,;12,;,;12
ξξυ

ρ
υυ

ρ
 

                                         

( ) ( )[ ]szz
dz
dszz nn ,;,; υυ +=  

                                          

( )



















+−=

− 2/1
2

0
21,
ρ

ψ scszn                   [By 

using equation (18)] 

From the above equation we can say ( )
1
nu can be 

a solution of (15) if  

  ( ) ( )szFscsz nn ,21,
2/1

2
0 =




















+−

−

ρ
ψ                                                                                     

(20) 

 

Let ,    ( ) ( )[ ]tsszLtz nn →= − ;,, 1 ψψ  

Then by applying Laplacian inverse on (19) we 
obtain the following integral equation: 

( ) ( ) ( )[ ] ττρτψψ dtJzctzFtz
t

nnn −+= ∫ /2,),(, 0
0

0

                                                                 (21) 

where 0J denotes Bessel’s function of 1st kind 
of order zero.  

From (19) we get   

0),( =
∞→zn tzF                                                                                                                                

(22)  

Equation (21) is a Voltera type integral equation 
and solution by iterative scheme is given in the 
following:   

( ) ( ) ( )[ ] ,/2,),(,
0

0
0

0∑ ∫
∞

=

−+=
m

t
m

n
m

nn dtJzFctzFtz ττρτψ

                                                        (23) 

where, 

             ,0
nn FF =      
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             ( ) ( )[ ] ./2, 0
0

1 ττρτ dtJzFF
t

m
n

m
n −= ∫ −    

From equations (16) and (18) we get  

( ) ( ) ξ
ρ

ξψ
ξ

ρ desscszu
z

c
zs

nn ∫
−

+−
−









+−=

0

22/1
2

0
1 0

22,,

 

Fortunately we have the following tabulated 
result     

( ) ( )btHbtaJts
as

eL
asb

−−=











→

+

+−
− 22

022

1 ;
22

 

Using this result we finally get 

( ) ( ) ( )

( ) ( ) .,2,

,,2,,

0
0

2

0

2
00

0
0 0

2

0

2
00

1

0

0

0

c
ztifdd

c
ztJc

c
ztifdd

c
ztJctzu

z

tcz
c

zt

n

z
c

zt

nn

<














































 −
−−−=

>














































 −
−−−=

∫ ∫

∫ ∫

−=

−
−

=

=

−
−

=

ξτ
ξ

τ
ρ

τξψ

ξτ
ξ

τ
ρ

τξψ

ξ

ξ

τ

ξ

ξ

τ

        (24)        

Now we solve (13) subject to the following 
initial and boundary conditions:

 
( ) ( ) ( ) ( ) ( ) ( ) ( ) )(,0;,0;00, 333 tgztutftuzu nnnnn

++ =∂∂==

.                                                            (25)  

From (22) we get another condition 

( ) 0
3

=
∂

∂

∞→z

n

z
u

                                                                                                                                       

(26) 

Now solution of (13) satisfying (25) and (26) 
can be given by 

( ) ( ) ( ) ,
2
1

2
,3















 −+






 ++= ∫

+

− c
ztf

c
ztfdgctzu nn

c
zt

c
zt

nn ττ

                                                                (27)       

In which  

( ),1 2νρν −= Ec   

[ ] [ ]∞∞−→∞∞− ,,:nf   and  
[ ] [ ]∞∞−→∞∞− ,,:ng  is defined as follows,    

( )
( ) .0

,0,)(

<−−=

>=
+

+

tiftf
tiftftf

n

nn                   

( )
( ) .0

,0,)(

<−−=

>=
+

+

tiftg
tiftgtg

n

nn  

To satisfy the equation (26) we need  

( ) ,0=
∞→

+

tn tf  

( ) .0=
∞→

+

tn tg  

So we have 

( ) ( )
























 −′−






 +′+















 −+






 +

−+
=

∂

∂

−+
=

c
ztf

c
ztf

cc
ztg

c
ztgE

ab

z
uE

ab
tzF

nnnn

n
n

1
1)(

1

1)(
2,

2

3

2

ν
ν

ν
ν

                      (28)
 

Here we take ++
nn gf ,  in a way so that 

( ) ( ) ( ) ( )abtgabtf nn ++ ++ ,   are finite and 
can’t be ignorable for all t , otherwise we obtain 
the trivial case where ( ) 0, ≈tzFn ,which implies  

( ) .01 ≈nu     

4. Conclusion:  

We have discussed above the radial vibration of 
a thin isotropic semi-infinite cylindrical cell 
under cylindrical symmetry in asymptotic 
approach when the cell is disturbed 
longitudinally at one end.  Equation (24) gives 
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the expression of ( ) ( )tzu n ,1  in terms of ( )tzn ,ψ . 
Equation (23) gives the expression for ),( tznψ
in terms of ( )tzFn , . ),( tzFn is defined in (15.b) 
and it is given explicitly in terms of known 
function ( ) )(, tgtf nn

++ which are the given 
longitudinal disturbance on boundary 
introduced in Equation (25).   
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